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1. INTRODUCTION

The Fibonacci grid, proposed by Swinbank and
Purser (1999), provides attractive properties for
global numerical atmospheric prediction by offer-
ing an optimally homogeneous, geometrically regu-
lar, and approximately isotropic discretization, with
(as always) only the polar regions requiring special
numerical treatment. It is a mathematical ideal-
ization, applied to the sphere, of the multi-spiral
patterns often found in botanical structures, such
as in pine cones and sunflower heads. Computa-
tionally, it is natural to organize the domain into
zones, in each of which the same pair (or possibly,
triplet) of Fibonacci spirals dominate. But the fur-
ther subdivision of such zones into tiles of a shape
and size suitable for distribution to the processors of
a massively parallel computer requires careful con-
sideration if the subsequent spatial computations
along the respective spirals, especially those com-
putations (such as compact differencing schemes)
that involve recursion, can be implemented in an ef-
ficient, load-balanced manner without requiring ex-
cessive amounts of inter-processor communications.
Even when traditional low-order explicit methods
are used, care must still be taken.

We show how certain simple properties of the
Fibonacci sequence (whose numbers prescribe the
multiplicities of the members of the successive
families of spirals that make up the grid) may
be exploited in the subdivision of grid zones into
arrangements of triangular grid tiles, each with
two sides coincident with grid lines and a ragged
“hypotenuse” approximately aligned east—west.

2. FIBONACCI AND LUCAS NUMBERS

The Fibonacci sequence, F,, and the related
Lucas sequence, Ly, (e.g., Conway and Guy, 1996)
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for n > 0, comprise the sets (0,1,1,2,3,5,8,...)
and (2,1,3,4,7,11,18,...), respectively. In each
sequence, each number is the sum of the two that
precede it. A pair of simple formulae, valid also for
negative integers, relate F,, and L, to the golden

ratio, ¢ = (v/5 +1)/2:
F, = [¢" — (=9)""]/V5, (1)

Lp=¢"+(=¢)™" (2)
From the generic identity implied by (1) and (2):

FnLn+p = F2n+p - (_)an’ (3)

we see that,
FnLn = FZn; (4)

and,

Fs,41—1, neven;

FnLn:i:l = { (5)
FZn:I:l + ]., n odd.

As we show below, these results are particularly
useful for tackling the problem of achieving a
sytematic domain decomposition of the Fibonacci
grid.

3. DOMAIN DECOMPOSITION

As discussed in Swinbank and Purser (1999),
the natural quadrilateral computational grid at a
given latitude is formed by the mutual intersections
of two familes of spirals associated with the two
consecutive Fibonacci numbers that quantify the
spirals in each family. Since the index of one of
these Fibonacci numbers, say Fb,, must be even,
it is exactly factorable according to (4); thus, this
zone of the grid may be evenly subdivided into F},
oblique stripes containing L, spirals each. The
complementary grid family of odd index, Fa,11,
almost factorizes into F, transverse stripes of
L+, except for a “dislocation” of one grid unit



=z

Figure 1. Domain decomposition into triangular tiles of a (southern) circumpolar region of the Fibonacci grid
shown in Mercator projection. The representative spirals labeled, “Fg” and “Fgy”, belong to the families containing
Fg = 21 and Fy = 34 members respectively. Note that, for each zone, there is a dual to the decomposition shown, in
which the roles of the Fibonacci and Lucas numbers are interchanged.

accumulated in a circuit once around the zone. It
is possible to align these dislocations along one
common spiral of index F»,. Then, by bisecting
the resulting approximately “golden” rectangles by
their east-west diagonals, we achieve the desired
tiling of this zone by triangles, leaving no gaps or
overlaps. From one zone to the next, it is no longer
possible to ensure a seemless join but, by arranging
a slender overlap in latitude, we ensure that each
region of the global grid is covered by our tiling.

To illustrate the kind of pattern obtained,
fig. 1 shows the decomposition, as it appears in
the conformal Mercator projection, of a portion
of the idealized planar version of this grid (the
most southerly 30 points are omitted to keep
the paper short). In this schematic depiction,
each zone contains only a single “course” of
triangle-pairs; in practice, the broad equatorial and
midlatitude grid zones, accounting for the bulk of
the numerical computations, would each contain
several courses of identical tile-pairs of the largest
dimensions (and therefore the most efficient inter-
processor communications). Towards the poles,
both the numbers and sizes of the tiles in each zone
become progressively smaller, so that efficient load
balancing would require, near the poles, a much
larger ratio of tiles per processor than near the
equator; at sufficiently large latitudes, entire zones
would be accommodated in each processor, and the
individual tiles could be dispensed with.

4. DISCUSSION AND CONCLUSIONS

We have provided an outline of a generic
method of decomposing a Fibonacci grid into

smaller units for use in massively parallel computer
architectures. The most striking feature of this
decomposition is that the elementary tiles are
triangular (but such that pairs of them can always
be stored in regular rectangular arrays, which
simplifies the coding).

The application of general recursive numeri-
cal procedures (e.g., compact differencing) always
presents a special difficulty in the context of dis-
tributed domains, and the apparent extra irregu-
larity incurred by a triangular tiling might suggest
that this problem is rendered intractable. However,
the recursive operations we encounter on an inher-
ently regular grid can be invariably represented with
constant coefficents, and we find that these pro-
cesses can be accommodated efficiently even when
the lengths of segments in each tile are uneven.
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